TOWARDS FUNDAMENTALS OF χ-Fe₅C₂-CATALYZED FISCHER-TROPSCH SYNTHESIS

Bingxu Chen¹, Thanh Hai Pham¹, Nan Song¹, Xuezhi Duan^{1*}, Gang Qian¹, De Chen² and Xinggui Zhou¹

¹State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

²Norwegian University of Science and Technology, Trondheim 7491, Norway

Abstract

Spin-polarized density functional theory calculations have been performed to investigate the mechanism of Fischer-Tropsch synthesis (FTS) on a χ -Fe₅C₂ catalyst, regarded as the dominant active phase of ironbased FTS catalysts. Facets exposed and their ratio of the catalyst can be obtained by Wulff construction on the basis of its orientation-dependent surface free energies. High miller index, thermodynamically stable terraced-like (510) surface is predicted as the dominant exposed facet. On this surface, systematic analyses of adsorption and activation properties of CO suggest direct CO dissociation as the preferred activation pathway. C-C coupling is shown to be much more favorable in comparison to CH₄ formation. Both C+CR and CH+CR (R \equiv H or alkyl) are discriminated as the favored pathways, which follow the carbide mechanism. Higher effective barrier of chain termination by C₂₊ hydrogenation than C-C coupling indicates the favorable formation of long-chain hydrocarbons. Finally, a plausible catalytic cycle of FTS on this surface is proposed.

Keywords

χ-Fe₅C₂ catalyst, CO activation, Fischer-Tropsch synthesis mechanism

Introduction

Iron-based Fischer-Tropsch synthesis (FTS) is a sustainable and economically viable process in enabling direct conversion of biomass- and coal-derived syngas to clean fuels and value-added chemicals. Its fundamental understanding is, however, rather limited owing to the complex phase composition and transformation of working iron catalysts in comparison with other FTS catalysts (e.g., Ru and Co). Until recently it has been demonstrated by integrated theoretical and multiple advanced in-/ex-situ studies that among various iron species, Hägg iron carbide (χ -Fe₅C₂) is dominant active phase responsible for the high FTS activity. The objective of this study is to elucidate the mechanism of χ -Fe₅C₂-catalyzed Fischer-Tropsch synthesis by spin-polarized DFT calculations. All of the periodic spin-polarized calculations were performed at the density

function theory (DFT) level within the Vienna Ab-initio Simulation Package (VASP).

Results and discussion

Surface energies of 11 facets of χ -Fe₅C₂ observed from the XRD patterns were first calculated, and then the corresponding equilibrium shape was obtained by Wulff construction. The thermodynamically stable (510) surface was predicted to have the largest percentage among the exposed crystal facets. Subsequently, two kinds of CO activation mechanisms (i.e., direct and H-assisted CO dissociation) and the corresponding six kinds of CO activation pathways on χ -Fe₅C₂ (510) were investigated. The systematic analysis of the activation properties of CO

^{*} E-mail xzduan@ecust.edu.cn; Fax: +86-21-64253528

suggests the direct CO dissociation as the preferred activation pathway (Pham et al., 2014).

All possible reaction pathways including carbide and CO insertion mechanisms for CH₄ formation and C₁-C₁ coupling were further studied, aiming to discriminate the active sites and reaction mechanisms. The surface Coccupied site is inactive towards CH₄ formation, and other cases also exhibit high effective barriers, indicating unfavourable occurrence of CH4 formation. The C+CH and CH+CH are the most likely coupling pathways in terms of the carbide mechanism. Furthermore, in order to quantify FTS selectivity between χ -Fe₅C₂(510) and other catalysts, the effective barrier difference between CH₄ formation and C_1 - C_1 coupling (i.e., ΔE_{eff}) was used as a descriptor. As shown in Table 1, FTS selectivity is highly sensitive to the crystal phase and facet of catalyst, and the χ -Fe₅C₂ (510) surface exhibits the highest ΔE_{eff} and thus the lowest selectivity of CH₄ as well as the highest selectivity of C₂₊ (Pham et al., 2015).

Table 1. Effective barriers (eV) of CH_4 formation and C_1-C_1 coupling and their barrier differences on Rh, Ru, Co, Fe, and their carbide surfaces.

Surface	E_{eff,CH^4}	$E_{eff,C^1\text{-}C^1}$	ΔE_{eff}	ref
Stepped $Co_2C(001)$	1.27	2.59	-1.32	Changest
Stepped Co (0001)	1.31	1.55	-0.24	
χ -Fe ₅ C ₂ (100)	1.89	1.94	-0.05	al., 2010
Rh (211)	1.23	1.68	-0.45	Change
Fe (210)	2.13	2.19	-0.06	Cheng et
Stepped Ru (0001)	1.44	1.34	0.1	al., 2009
•••				Govender
Fe(100)	2.13	1.92	0.21	et al., 2012
				and 2013
χ-Fe₅C₂ (510)	2.39	1.66	0.73	This work

Figure 1: Schematic diagram for FTS catalytic cycle of C species on χ -Fe₅C₂(510) surface.

In addition, the mechanism of chain growth and chain termination was also studied. It was found that the chain growth obeys carbide mechanism, and the most likely mechanism of C-C coupling involves the recombination of adsorbed C/CH and CR (R=H or CH₃) followed by the hydrogenation of C_{β} . The subsequent hydrogenation of C_{α}

and elimination of β -hydride would result in the chain termination (i.e., the formation of alkane or alkene). Furthermore, the regeneration of active sites (i.e., the site regeneration), undergoing a synchronized pathway for CO dissociation and C-C coupling, was systematically investigated. The CO dissociation on the CR adsorbed surfaces show similar barrier compared to that on the clean surface. Finally, the plausible mechanism of hydrocarbon formation from syngas was proposed and shown in Figure 1.

Conclusion

In summary, we have theoretically elucidated the mechanism of χ -Fe₅C₂-catalyzed Fischer-Tropsch synthesis. High miller index, thermodynamically stable terraced-like (510) surface is predicted as the dominant exposed facet. On this surface, direct CO dissociation mechanism is suggested as the preferred activation pathway, and C₁-C₁ coupling are significantly enhanced in comparison to CH₄ formation. The C+CR and CH+CR (R=H or alkyl) are the mostly likely coupling pathways in terms of the carbide mechanism. Higher effective barrier of chain termination by C₂₊ hydrogenation than C-C coupling indicates the favorable formation of long-chain hydrocarbons. Moreover, a plausible FTS catalytic cycle of carbon species is also proposed. The insights revealed here might guide rational design and optimization of χ -Fe₅C₂ FTS catalysts.

Acknowledgments

This work was supported by the Natural Science Foundation of China (21306046).

References

- Cheng J., Hu P., Ellis P., French S., Kelly G., Lok C.M. (2009). An Energy Descriptor To Quantify Methane Selectivity in Fischer-Tropsch Synthesis: A Density Functional Theory Study. J. Phys. Chem. C., 113, 8858.
- Cheng J., Hu P., Ellis P., French S., Kelly G., Lok C.M. (2010). Density functional theory study of iron and cobalt carbides for Fischer-Tropsch synthesis. J. Phys. Chem. C., 114, 1085.
- Govender A., Curulla-Ferre D., Niemantsverdriet J.W. (2012). A density functional theory study on the effect of zeropoint energy corrections on the methanation profile on Fe (100). *ChemPhysChem*, 13, 1591.
- Govender A., Curulla-Ferre D., Perez-Jigato M., Niemantsverdriet J.W. (2013). First-principles elucidation of the surface chemistry of the C₂H_x (x= 0-6) adsorbate series on Fe (100). *Molecules*, *18*, 3806.
- Pham T.H., Duan X.Z., Qian G., Zhou X.G., Chen D. (2014). CO Activation Pathways of Fischer-Tropsch Synthesis on χ-Fe₅C₂ (510): Direct versus Hydrogen-Assisted CO Dissociation. J. Phys. Chem. C., 118, 10170.
- Pham T.H., Qi Y.Y., Yang J., Duan X.Z., Qian G., Zhou X.G., Chen D., Yuan W.K. (2015). Insights into Hägg Iron-Carbide-Catalyzed Fischer-Tropsch Synthesis: Suppression of CH₄ Formation and Enhancement of C-C Coupling on χ-Fe₅C₂ (510). ACS Catal., 5, 2203.